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Abstract
Anomalously strong finite-size effects have been observed for the mean square
radius of gyration R2

K of Gaussian random polygons with a fixed knot K as a
function of the number N of polygonal nodes. Through computer simulations
with N < 2000, we find that the gyration radius R2

K can be approximated by a
power law, R2

K ∼ N2νeff
K , for several knots, where the effective exponents νeff

K

are larger than 0.5 and less than 0.6. Furthermore, a crossover occurs for the
gyration radius of the trivial knot, when N is roughly equal to the characteristic
length Nc of random knotting. Assuming an asymptotic fitting formula, we also
discuss possible asymptotic behaviours for R2

K of Gaussian random polygons.

PACS numbers: 36.20.−r, 61.41.+e, 05.40.Fb

1. Introduction

Topological effects on statistical and dynamical properties of ring polymers should be quite
nontrivial. The topological state of a ring polymer is described by a knot type, and it is invariant
after its synthesis. Knotted ring polymers or knotted DNAs have been discussed theoretically
since the 1960s [1, 2], and recently they have been synthesized in several experiments [3, 4].
Various topological effects on ring polymers have been explicitly studied through numerical
simulations of random polygons under topological constraints [5–8]. However, many questions
still remain unsolved, even on the average size of a knotted ring polymer in solution, which
should be the most fundamental quantity in the physics of ring polymers.

Recently, it has been suggested [9–11] that the average size Rtriv of a random polygon
with the trivial knot should scale as Nν with respect to the number N of polygonal nodes,
where the exponent ν is given by the exponent νSAW of the asymptotic scaling behaviour of
the self-avoiding walk (SAW), where νSAW ≈ 0.588. Here we remark that random polygons
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correspond to ring polymers with no excluded volume. There has also been a conjecture [9]
that the effect of topology on the average size of ring polymers could play a similar role as the
excluded-volume effect, since the topological constraint should effectively lead to an entropic
repulsion among the monomer segments. Here, we note that the trivial knot (or the unknot) is
such a knot that is equivalent to an unknotted circle.

The conjecture on the entropic repulsion seems to be quite interesting and the anomalous
scaling behaviour with an enhanced exponent should be effective, at least for some numerical
simulations. However, it is not trivial to understand the consequence that the scaling exponent
should be enhanced and given by that of the SAW. Furthermore, it is quite nontrivial how
the entropic repulsion could lead to finite-size properties on the graph of the average size Rtriv

versus N . The purpose of this letter is to discuss these questions through numerical simulations.
We evaluate the mean square radius of gyration R2

K of Gaussian random polygons with a fixed
knot type K . Discussing the N dependence of R2

K for several different knot types, we show
that the anomalous scaling behaviour should be considered as a strong finite-size effect which
could be valid for very large values of N , such as 2000.

We now review some relevant results on the topological effects of ring polymers. Let us
take a model of random polygons of N nodes [6,7], which describes ring polymers consisting
of N Kuhn units at the theta condition. We denote by PK(N) the probability of a given
configuration of the random polygon of N nodes having a fixed knot type K . For the trivial
knot, it was numerically shown [7,8,12] that the probability is given by an exponential function
of N : Ptriv(N) = exp(−N/Nc). For nontrivial knots, the probability is well described by the
following function of N : PK(N) = CK (N/Nc)

m(K) exp(−N/Nc), where we call Nc and
m(K) the characteristic length of random knotting and the topological exponent of the knot,
respectively [13]. The value of Nc is model-dependent and is roughly given by 340 for the
Gaussian random polygon [8, 13]. We remark that the number Nc is important in the analysis
of topological effects with the blob picture [11].

The mean-squared gyration radius R2
K under the topological constraint of a knot K has

been discussed for some models of self-avoiding polygons (SAPs) in [14–20]. In the lattice
model, it is shown that the asymptotic behaviour of R2

K is consistent with that of the RG theory
where, in the large N limit, the ratio R2

K/R2 comes close to 1.0 for any knot. However, for the
cylinder model of SAPs [21], it is found [20] that the limit of the ratio depends on the cylinder
radius which controls the excluded volume. For a lattice model of random polygons [22], R2

K

has been evaluated for the trivial and trefoil knots with small polygons of N < 200.

2. Anomalous finite-size behaviours

We have constructed M = 105 samples of the Gaussian random polygon with N nodes [6],
where N is given by 20 different values from 50 to 1900. We determine the number MK of
polygons with a knot K , enumerating such polygons in the set of M polygons that have the
same set of values of the two knot invariants: the determinant of the knot �K(−1) and the
Vassiliev invariant v2(K) of second degree [23, 24]. Then, for Gaussian random polygons,
numerical estimates of R2 and R2

K have been obtained for the four knots: the trivial, trefoil (31)
and figure-of-eight (41) knots, and the composite knot consisting of two trefoil knots (31#31).
Some of them are shown in figures 1 and 2.

We recall that, under no topological constraint, the mean square radius of gyration R2 of
a random polygon with N nodes is defined by R2 = ∑N

n,m=1〈( �Rn − �Rm)2〉/2N2. Here �Rn is
the position vector of the nth node and the symbol 〈·〉 denotes the statistical average, which is
given by the average over M polygons in the simulations. For a knot K , the quantity R2

K is
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Figure 1. Logarithmic plot of the ratio R2
K/R2 versus the number N of polygonal nodes of the

Gaussian random polygon for the range from N = 50 to 1900. Numerical estimates of R2
K/R2 for

the trivial, trefoil (31) and figure-of-eight (41) knots are shown by black circles, black squares and
black triangles, respectively.

Figure 2. Linear plot of the ratio R2
K/R2 versus the number N of polygonal nodes of the Gaussian

random polygon. Same symbols as in figure 1.

given by R2
K = ∑MK

i=1 R2
K,i/MK , where R2

K,i denotes the gyration radius of the ith Gaussian
random polygon that has the knot type K , in the set of MK polygons. In terms of R2

K , R2 is
given by R2 = ∑

K MKR2
K/M .

We see in figure 1 that the ratio R2
K/R2 increases monotonically with respect to N for

each of the four knots. For the trivial knot, the ratio R2
triv/R

2 is always larger than 1.0. When
N is large, however, the ratio R2

K/R2 also becomes greater than 1.0 for the other knots. Thus,
the topological constraint gives an effective swelling for large N .

There is a nontrivial finite-size behaviour for the trivial knot: in figure 1, the ratio R2
triv/R

2

increases very slowly when N < Nc while, when N > Nc, it can be approximated by a scaling
behaviour as R2

triv/R
2 ∼ N2νeff

triv , at least up to N = 2000. This ‘crossover phenomenon’ should
be consistent with the recent theory given by Grosberg [11]. However, the effective exponent
νeff

triv is much smaller than the exponent νSAW with respect to the errors. In fact, we have the
numerical estimate: νeff

triv ≈ 0.545.
For the case of nontrivial knots (31, 41, 31#31), the ratio R2

K/R2 is well approximated by
the power law: R2

K/R2 ≈ �KN2�νeff
K for the range from N = 100 to 2000. Furthermore, there

is no crossover for the nontrivial knots: we do not find any change in the slope near N ∼ Nc

for each of the graphs. It is also remarkable from table 1 that the exponent �νeff
K strongly

depends on the knot type. In particular, the effective scaling exponent of the composite knot
31#31 is almost as large as the exponent νSAW, while that of the trefoil knot is given by 0.561,
which is rather smaller than νSAW with respect to the errors.
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Table 1. Best estimates for the fitting lines in figure 1 describing the anomalous scaling behaviour:

R2
K/R2 = �K N2�νeff

K . Here �νeff
K = νeff

K − νRW. For the trivial knot, the fit is obtained from the
data points with N � 400. For the trefoil (31) and figure-of-eight (41) knots, and the composite
knot of 31#31, the fitting lines are obtained from the data for N � 100.

Knot type �K 2�νeff
K χ2

triv/ave 0.600 ± 0.012 0.090 ± 0.003 6
tre/ave 0.514 ± 0.004 0.121 ± 0.001 14
41/ave 0.431 ± 0.006 0.143 ± 0.002 11
31#31/ave 0.398 ± 0.005 0.153 ± 0.002 25

The three fitting lines of figure 1 become very close to each other at around N = 2000.
We see in figure 2 that, when N becomes close to 2000, the values of R2

K for the four knots
(K = trivial, 31, 41 and 31#31) should become almost equal to each other. In fact, up to
N = 1900, the values of R2

K for the nontrivial knots are always smaller than or equal to that
of R2

triv in our simulations. If the power-law approximation might be valid also for N > 2000,
then R2

triv would become much smaller than R2
K for the three nontrivial knots for large N and it

would be inconsistent with the numerical results obtained so far. Thus, we may conclude that
the approximation of R2

K by the power law should be valid only when N < 2000. Therefore, in
order to study the N dependence of R2

K for N > 2000, we need another independent analysis.

3. Asymptotic behaviour of R2
K

Let us discuss a possible asymptotic behaviour of R2
K through the following expansion:

R2
K = AKN2νK (1 + BKN−� + O(1/N)). It may be nontrivial to assume it for the Gaussian

polygons with N < 2000, since there are various finite-size effects as discussed in section 2.
Furthermore, in the case of cylindrical SAPs, a large-N plateau region appears in the graph
of R2

K/R2 versus N [20, 25] for any of the knots, while in figure 2 the plateau tendency is not
very clear when N < 2000. However, we discuss the best estimates given by the formula,
since they are quite useful in comparing the data of R2

K of Gaussian polygons with those of
other models. In fact, the formula is quite effective for R2

K of the lattice SAPs [17,19] and the
cylindrical SAPs [20, 25].

For each of the four knots, we have applied the asymptotic formula to the 13 data points of
the ratio R2

K/R2 with N � 700 shown in figures 1 and 2, and we have obtained the estimates of
�νK = νK − νRW, where νRW = 0.5. Here, we assign the condition of N � 700, considering
the strong finite-size effects of R2

K such as the crossover of the trivial knot.
The best estimates of the fitting parameters and the χ2 values are listed in table 2. From

the results, we may conclude that the asymptotic expansion is consistent with the numerical
values of R2

K for N � 700. It is remarked that the χ2 values in table 2 are less than 20 for the
four knots. Moreover, the best estimates are compatible with several different viewpoints. For
instance, the estimate of 2�νK is given by about 0.03 and is independent of the knot type. This
leads to an estimate of the exponent, νK ≈ 0.515, which could be consistent with the exponent
νRW with respect to the errors of the analysis. The fact that the exponent νK is independent of
the knot type is consistent with the interpretation on the lattice model of [17,19]. The estimated
values of the amplitude ratio AK/A for the four knots also seem to be independent of the knot
type.

Let us consider a formula which effectively describes the N dependence of R2
K for

N > 2000. Assuming νK = νRW in the asymptotic expansion, we have the following:
R2

K/R2 = αK(1 + βK N−� + O(1/N)). Here we have replaced by αK and βK , AK/A
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Table 2. Best estimates of the fitting parameters of the asymptotic formula: R2
K/R2 =

(AK/A)N2�νK (1 + (BK − B)N−�). Here �νK = νK − νRW. We set � = 0.5.

Knot type AK/A BK − B 2�νK χ2

triv/ave 1.146 ± 0.838 −3.628 ± 4.151 0.028 ± 0.084 4
tre/ave 1.122 ± 0.526 −4.973 ± 2.468 0.033 ± 0.054 11
41/ave 1.112 ± 1.102 −5.232 ± 5.113 0.032 ± 0.115 12
31#31/ave 1.115 ± 0.313 −5.952 ± 1.404 0.034 ± 0.033 13

Table 3. Best estimates of the fitting parameters of the formula effectively describing the large-N
behaviour of the ratio: R2

K/R2 = αK (1 + βK N−�).

Knot type αK βK χ2

triv/ave 1.459 ± 0.018 −4.925 ± 0.308 4
tre/ave 1.486 ± 0.012 −6.335 ± 0.198 12
41/ave 1.460 ± 0.025 −6.517 ± 0.414 8
31#31 1.495 ± 0.007 −7.283 ± 0.121 13

and BK − B, respectively. Applying the formula to the numerical data of R2
K of the Gaussian

random polygon for N � 700, we see that it gives good fitting curves to the data. The best
estimates of the parameters are shown in table 3. Interestingly, they are rather close to the best
estimates for the cylinder model of SAPs with a very small cylinder radius, which are obtained
by applying the same formula to the data of R2

K in [20]. In table 3, the parameter αK is roughly
given by 1.5 for the Gaussian random polygon. On the other hand, we have the similar value
for the cylinder model with the cylinder radius r = 0.001, as shown in figure 3 of [20]. We
also find in table 3 that αK ≈ 1.5 for the four knots. It follows that the mean size RK of random
polygons with a specified knot K , such as the trivial, 31, 41 and 31#31 knots, is larger than the
average size R of random polygons over all knots in the asymptotic regime. However, it is
consistent with the observation in figure 1 that the ratio R2

K/R2 increases monotonically and
approaches 1.3 or 1.4 when N ∼ 2000 (see also [20]).

4. Conclusion

We have shown that R2
K of Gaussian random polygons have strong finite-size effects which

should be valid for extremely large values of N , such as N = 2000. Thus, the studies [9–11]
associated with the conjecture of effective entropic repulsion should be important for describing
the strong finite-size effects of random polygons, which could appear practically in any system
of ring polymers in solution at the theta condition.

We would like to thank Professor K Ito, Dr K Tsurusaki and Dr H Furusawa for helpful
discussions. One of the authors (MKS) would also like to thank Professor A Yu Grosberg for
helpful discussions.
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